Q y lightbits

Multi-Attach for OpenStack, Kubernetes
and Lightbits: Implementation Framework

Author: Rob Bloemendal, Principal Solution Consultant
Date: April 2025

Abstract:

In today’s dynamic cloud landscape, multi-attach capabilities are essential for enabling flexible storage
access, improving application availability, and optimizing infrastructure utilization. By integrating
OpenStack’s robust cloud orchestration and Kubernetes’ container management with Lightbits’
high-performance, software-defined block storage, organizations can achieve seamless scalability, ultra-low
latency, and enterprise-grade data resiliency. This white paper presents a comprehensive framework for
implementing multi-attach functionality in OpenStack and Kubernetes environments using
Lightbits—empowering businesses to deliver highly available, efficient, and scalable cloud-native services
with full control over their storage and compute resources.

© 2025 Lightbits Labs

@y lightbits

I 12 Yo 11 T3 4 o o 3
7 o =T = o U= 1 = 3
3. Lightbits CSI driver ... 3
3.1 Lightbits CSI AriVEr OVEIVIEW.......uuviiiiiiiiiiiiiiieieeeeeee ettt e aaaaaaaa e 3
3.2 Configuring the Lightbits CSI driver=..........ooo e 4

4. Configure CSI to use RWX with Lightbits..........cccooommiiiiiiiiii s 8
4.1 Create the storage class t0 USE RWX.....oooo oot e e 8
4.2 Create a Physical Volume Claim..........cccccoiiiiiiii 9
4.3 Create the first Pod and attach it to the PVC...........ociiiii 10
4.3 Create the second Pod and attach it to the same PVC............ccoeiiiiiiii 12

5. OpenStack Multi-Attach Configuration............cccceiiiiiiiinrni e 14
5.1 Create @ VOIUME tYPE.....uuiiiiiiiiiieieieeeee ettt e e e et e 14

5.2 Create a new volume with volume type Ib-multi-attach.............ccccceeiiiiii 15
5.3 Attach the Volume Vol1 to Instance Demo..........coooiiiiiiiiiieiieeeeeees 15
5.4 Attach the Volume Vol1 to Instance Backup.........ccoooviiiiiiiii i, 16

R 031013 2 11T ' o O 18
About Lightbits Labs.........cccccceiiiiiiiii s 19
2

© 2025 Lightbits Labs

@y lightbits

1. Introduction

This white paper provides a step-by-step guide to seamlessly integrating Lightbits storage with OpenStack
and Kubernetes with multi-attach capabilities per volume from Lightbits. You'll learn how to configure
OpenStack and Kubernetes to make that happen. Lightbits itself supports multi-attach to a volume for the
OpenStack Cinder driver without any changes. For the Kubernetes CSl driver, specific settings must be
applied in the CSI configuration.

The focus of this white paper is on OpenStack volume type, Kubernetes storage class, and Lightbits CSI
driver.

2. Prerequisites

Before diving into seamless multi-attach with OpenStack, Kubernetes and Lightbits, a solid foundation is
essential. You'll need a fully functional OpenStack deployment or Kubernetes cluster with administrative
access, ensuring smooth orchestration and resource management. A Lightbits cluster must be up and
running, ready to deliver high-performance, software-defined storage to OpenStack services. Lastly, a
well-configured network is critical, enabling secure, efficient communication between OpenStack
components and Lightbits for optimal performance and scalability. With these key prerequisites in place,
you're set to unlock the full potential of multi-attach cloud storage.

3. Lightbits CSI driver

3.1 Lightbits CSl driver overview

The Lightbits CSl driver consists of two pods, the |b-csi-controller and the Ib-csi-node. The Ib-csi-controller
is responsible for:

® Creation and deletion of volumes on the Lightbits cluster.

® Making these volumes accessible to the Kubernetes cluster nodes that consume the storage on an
as-needed basis.

The Ib-csi-node is responsible for:

® Making the storage volumes exported by the Lightbits clusters accessible to the Kubernetes nodes.
e Formatting and checking the file system integrity of the volumes, if necessary.

© 2025 Lightbits Labs

@y lightbits

® Making the volumes accessible to the specific workload pods scheduled to the cluster node in
question.

The system is working as follows:

1. Create the volume Kubernetes Master

Ib-csi-controller

runs on the
Kubernetes Master

All the pods are
connected to the
same PVC on
Volume 1

runs on the
—2. Connects and controls volume access Kubernetes Master

| Y o | = o) @ }

Lightbits cluster

with 4 nodes
Volume 1 Volume i; replicated
3 times

Step 1: The CSl driver creates the volume (Volume 1), which is controlled by the Ib-csi-controller
Step 2: The CSl driver mounts Volume 1, known in Kubernetes as a PVC
Step 3: The pods claim the same PVC to use

The Lightbits Ib-csi-node controls the access to the volume and acts as a middleman between the pods and
the volume.

3.2 Configuring the Lightbits CSI driver*

The first step we take is to install the Lightbits CSl driver. The Lightbits CSl driver is open-sourced. To install
the driver on the Kubernetes master, do the following:

Unset
curl -1 -0

@y lightbits

"https://dl.lightbitslabs.com/public/lightos-csi/raw/files/1lb-csi-bu
ndle-1.18.0.14010542861.tar.gz’

sudo tar -xvf lb-csi-bundle-1.18.0.14010542861.tar.gz

The tar file creates the following directories:
- helm

- k8s

- examples

The file, which needs to be adjusted to make the CSl driver use the RWX (ReadWriteMany) for the volume, is
inthe directory k8s and is called Ib-csi-plugin-k8s-v1.30-dc.yaml. In this file, we need to create two extra
entries to enable the RWX for the CSI driver. Please edit the file and add in the containers section the
following two lines, (line number 313):

- name: LB_CSI_RWX
value: "true"

The service account Ib-csi-node-sa section looks like this:

serviceAccount: Ib-csi-node-sa

containers:
- name: Ib-csi-plugin
if hosting the plugin in a different registry, e.g. a local private
Docker registry, modify the image identifier below accordingly:
image: docker.lightbitslabs.com/lightos-csi/lb-csi-plugin:1.17.0
args:
_p"
env:
-name: CSI_ENDPOINT
value: unix:///csi/csi.sock
- name: KUBE_NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
-name: LB_CSI_NODE_ID
value: $(KUBE_NODE_NAME).node
-name: LB_CSI_LOG_LEVEL
value: debug

© 2025 Lightbits Labs

https://cloudsmith.io/~lightbits/repos/lightos-csi/packages/detail/raw/lb-csi-bundle-1.18.0.14010542861.tar.gz/-/
https://cloudsmith.io/~lightbits/repos/lightos-csi/packages/detail/raw/lb-csi-bundle-1.18.0.14010542861.tar.gz/-/
https://cloudsmith.io/~lightbits/repos/lightos-csi/packages/detail/raw/lb-csi-bundle-1.18.0.14010542861.tar.gz/-/
http://docker.lightbitslabs.com/lightos-csi/lb-csi-plugin:1.17.0

@y lightbits

- name: LB_CSI_LOG_ROLE
value: node

-name: LB_CSI_LOG_FMT
value: text

- name: LB_CSI_LOG_TIME
value: "true"

- name: LB_CSI_RWX
value: "true"

This also needs to be added to the section serviceAccount: Ib-csi-ctrl-sa (line number 448) and looks like the
following:

serviceAccount: Ib-csi-ctrl-sa
containers:
- name: Ib-csi-plugin
if hosting the plugin in a different registry, e.g., a local private
Docker registry, modify the image identifier below accordingly:
image: docker.lightbitslabs.com/lightos-csi/lb-csi-plugin:1.17.0
args:
_p"
env:
-name: CSI_ENDPOINT
value: unix:///var/lib/csi/sockets/pluginproxy/csi.sock
- name: KUBE_NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: LB_CSI_NODE_ID
value: $(KUBE_NODE_NAME).ctrl
-name: LB_CSI_LOG_LEVEL
value: debug
- name: LB_CSI_LOG_ROLE
value: controller
-name: LB_CSI_LOG_FMT
value: text
- name: LB_CSI_LOG_TIME
value: "true"
-name: LB_CSI_RWX

© 2025 Lightbits Labs

http://docker.lightbitslabs.com/lightos-csi/lb-csi-plugin:1.17.0

-\ . .
W v lightbits
The next thing is to run the yaml with the kubectl command:

Unset

kubectl create -f lb-csi-plugin-k8s-v1.30-dc.yaml

The output will be like the following:

serviceaccount/Ib-csi-ctrl-sa created

serviceaccount/Ib-csi-node-sa created
clusterrole.rbac.authorization.k8s.io/external-attacher-runner created
clusterrole.rbac.authorization.k8s.io/Ib-csi-external-resizer-runner-role created
clusterrole.rbac.authorization.k8s.io/external-provisioner-runner created
clusterrole.rbac.authorization.k8s.io/external-snapshotter-runner created
clusterrolebinding.rbac.authorization.k8s.io/csi-attacher-role created
clusterrolebinding.rbac.authorization.k8s.io/lb-csi-external-resizer-runner-binding created
clusterrolebinding.rbac.authorization.k8s.io/csi-provisioner-role created
clusterrolebinding.rbac.authorization.k8s.io/csi-snapshotter-role created
role.rbac.authorization.k8s.io/external-provisioner-cfg created
role.rbac.authorization.k8s.io/external-snapshotter-leaderelection created
rolebinding.rbac.authorization.k8s.io/csi-provisioner-role-cfg created
rolebinding.rbac.authorization.k8s.io/external-snapshotter-leaderelection created
daemonset.apps/Ib-csi-node created

statefulset.apps/Ib-csi-controller created

csidriver.storage k8s.io/csi.lightbitslabs.com created

To verify that the Lightbits pods are running:

Unset
kubectl get pod -n kube-system | grep 1b

The output will be similar to the following:

Ib-csi-controller-0 5/5 Running O 7m57s
Ib-csi-node-f8tkb 3/3 Running O 7m57s

The CSl driver is now configured to work with RWX.

© 2025 Lightbits Labs

@y lightbits

*For more information on the CSI driver, reference these documents:
https://documentation.lightbitslabs.com/lightbits-plug-ins/lightbits-kubernetes-configuration

https://documentation.lightbitslabs.com/lightbits-plug-ins/multi-attach

4. Configure CSl to use RWX with Lightbits

4.1 Create the storage class to use RWX

The first thing to create is a storage class. The storage class used in this example is called
storage-class-block-rwx.yaml. Look at the example below:

Source: Ib-csi-workload-examples/charts/storageclass/templates/storageclass.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:
name: Ib-sc-block-rwx

provisioner: csi.lightbitslabs.com

allowVolumeExpansion: true

parameters:
mgmt-endpoint: 192.168.1.41:443,192.168.1.42:443,193.168.1.43:443
replica-count: "3"
compression: enabled
project-name: default
mgmt-scheme: grpcs
csi.storage.k8s.io/controller-publish-secret-name: example-secret
csi.storage.k8s.io/controller-publish-secret-namespace: default
csi.storage.k8s.io/controller-expand-secret-name: example-secret
csi.storage.k8s.io/controller-expand-secret-namespace: default
csi.storage.k8s.io/node-publish-secret-name: example-secret
csi.storage.k8s.io/node-publish-secret-namespace: default
csi.storage.k8s.io/node-stage-secret-name: example-secret
csi.storage.k8s.io/node-stage-secret-namespace: default
csi.storage.k8s.io/provisioner-secret-name: example-secret
csi.storage.k8s.io/provisioner-secret-namespace: default

Create the storage class

Unset
kubectl create -f storage-class-block-rwx.yaml

© 2025 Lightbits Labs

https://documentation.lightbitslabs.com/lightbits-plug-ins/lightbits-kubernetes-configuration
https://documentation.lightbitslabs.com/lightbits-plug-ins/static-manifests#rwx-support
https://documentation.lightbitslabs.com/lightbits-plug-ins/multi-attach

@y lightbits

The output is as follows

persistentvolumeclaim/lightbits-test-pvc-rwx created

4.2 Create a Physical Volume Claim

A configuration file is needed to create a Physical Volume Claim (PVC), which sets the volumes to be able to
use RWX in block mode. In the yaml file the parameter to set is:

spec:
accessModes:
- ReadWriteMany
volumeMode: Block

In the following example, we are creating a PVC on Lightbits with RWX capabilities and a size of 20GB. Look
at the following example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: lightbits-test-pvc-rwx
namespace: default
spec:
accessModes:

- ReadWriteMany
volumeMode: Block
storageClassName: Ib-sc-block-rwx
resources:

requests:

storage: 20Gi

In this example, the file is called rwx-pvcyaml.

Create the PVC

Unset
kubeclt create -f rwx-pvc.yaml

The output will be:

persistentvolumeclaim/lightbits-test-pvc-rwx created

© 2025 Lightbits Labs

a0 . .
W v lightbits
To verify the creation of the PVC

Unset
kubectl get pvc

The output will be:

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
VOLUMEATTRIBUTESCLASS AGE

lightbits-test-pvc-rwx Bound pvc-6efb79f7-e94c-4267-8fb0-38fcfdedcafd 20Gi RWX
Ib-sc-block-rwx <unset> 117s

4.3 Create the first Pod and attach it to the PVC

Create the pod with the PVC. In this example, we start with the first Pod. The file is called rwx-pod1.yaml and
is configured as follows:

kind: Pod
apiVersion: v1
metadata:
name: example-block-pod-1
spec:
containers:
- name: busybox
image: busybox
resources:
limits:
memory: "128Mi"
cpu: "500m"
args:
- sleep
-"1000000"
imagePullPolicy: Always
volumeDevices:
- name: |b-csi-mount
devicePath: /dev/Ibcsiblkdev
restartPolicy: "Never"
volumes:
- name: Ib-csi-mount
persistentVolumeClaim:
claimName: lightbits-test-pvc-rwx

10

© 2025 Lightbits Labs

@y lightbits

Unset
kubectl create -f rwx-pod1l.yaml

The output will be as follows:

pod/example-block-pod-1 created

To verify that the pod is working:

Unset
kubectl get pod

The output will be
NAME READY STATUS RESTARTS AGE
example-block-pod-1 1/1 Running O 26s

To verify that the pod is running on the PVC

Unset
kubectl describe pod example-block-pod-1

The output will be

Volumes:
Ib-csi-mount:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: lightbits-test-pvc-rwx
ReadOnly: false

11

© 2025 Lightbits Labs

@y lightbits

4.3 Create the second Pod and attach it to the same PVC

Create the pod with the PVC. In this example, we start with the first Pod. The file is called rwx-pod2.yaml and
is configured as follows:

kind: Pod
apiVersion: vl
metadata:
name: example-block-pod-2
spec:
containers:
- name: busybox
image: busybox
resources:
limits:
memory: "128Mi"
cpu: "500m"
args:
- sleep
-"1000000"
imagePullPolicy: Always
volumeDevices:
- name: Ib-csi-mount
devicePath: /dev/Ibcsiblkdev
restartPolicy: "Never"
volumes:
- name: Ib-csi-mount
persistentVolumeClaim:
claimName: lightbits-test-pvc-rwx

Create the pod on the PVC

Unset
kubectl create -f rwx-pod2.yaml

The output will be as follows:

pod/example-block-pod-2 created

12

© 2025 Lightbits Labs

@y lightbits

To verify that the pod is working

Unset
kubectl get pod

The output will be

NAME READY STATUS RESTARTS AGE
example-block-pod-1 1/1 Running O 3m59s
example-block-pod-2 1/1 Running O 11s

To verify that the pod is running on the PVC

Unset
kubectl describe pod example-block-pod-2

The output will be

Volumes:
Ib-csi-mount:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: lightbits-test-pvc-rwx
ReadOnly: false

To verify that both pods are running on the same PVC

Unset
kubectl describe pvc lightbits-test-pvc-rwx

The output will be:

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 20Gi

Access Modes: RWX

VolumeMode: Block

Used By: example-block-pod-1
example-block-pod-2

13

25 Lightbits Labs

@y lightbits

5. OpenStack Multi-Attach Configuration

In this chapter, the guidelines will take you through the cli from OpenStack. The multi-attach needs to be
configured from the OpenStack environment. By default, the Cinder driver for Lightbits (upstream for
OpenStack) supports the multi-attach option. There is no configuration required for Lightbits.

5.1 Create a volume type

Go to the OpenShift Cluster Master and log in as an administrator on the cli to manage the OpenStack
environment. To create a new volume type with multi-attach capabilities, with compression enabled, 3
replicas, with the volume type name Ib-multi-attach, please type the following command:

Unset
openstack volume type create --property multiattach='<is> True' --property
compression='<is> True' --property lightos:num_replicas=3 --property

volume_backend_name=1b-cluster lb-multi-attach

Output

Field	Value
description	None
id	659c827¢c-5d87-4c7a-bd12-a98086f60901
is_public	True
name	Ib-multi-attach
properties	compression="<is> True', lightos:num_replicas='3', multiattach="<is> True',

volume_backend_name='lb-cluster’ |

5.2 Create a new volume with volume type Ib-multi-attach

The command to create a new volume is as follows:

14

© 2025 Lightbits Labs

@y lightbits

Unset

openstack volume create --size 20 --type lb-multi-attach Voli1

Output

| Field | Value

| attachments [1] |
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2025-04-09T11:50:29.002637
description	None
encrypted	False
id	6e5711ab-2a91-4d5f-b17f-5bd499bee09a
migration_status	None
multiattach	True

name	Vol1
properties	
replication_status	None
size	20
snapshot_id	None
source_volid	None

status	creating
type	Ib-multi-attach
updated_at	None
user_id	b2969eb5499346df88aecf4869040a99

5.3 Attach the Volume Vol1 to Instance Demo

The command to create a new volume is as follows:

Unset

openstack server add volume Demo Vol1

15

© 2025 Lightbits Labs

@y lightbits

Output
Field	Value
ID	82b41b69-aa4f-4ccl-a71a-cdcdcbbbf2fc
Server ID	7843f583-1fc7-4d5c-91c1-3d9de9e1023a
Volume ID	82b41b69-aa4f-4ccl-a71a-cdcdcbbbf2fc
Device	/dev/vdb
Tag	None

| Delete On Termination | False |

4 4 4+
T T T

5.4 Attach the Volume Vol1 to Instance Backup

The command to create a new volume is as follows:

Unset

openstack server add volume Backup VolT

Output
Field	Value
ID	82b41b69-aadf-4ccl-a71a-cdcdcbbbf2fc
Server ID	7cefd02b-97e4-482e-9c91-217cabeb5b2a
Volume ID	82b41b69-aa4f-4ccl-a71a-cdcdchbbf2fc
Device	/dev/vdb
Tag	None

| Delete On Termination | False |

4 4 4
T T T

To verify that both instances are running on the same volume

16

© 2025 Lightbits Labs

@y lightbits

Unset
openstack volume show Vol1

The output will be

+ + +
| Field | Value |
4 4

|

4

| attachments | [{'id": '82b41b69-aa4f-4ccl-a71a-cdcdcbbbf2fc!, 'attachment_id'":

| | 'Ob13b195-5ebc-42bd-9070-ce10659829bc!, 'volume_id':
'82b41b69-aa4f-4ccl-a71a-cdcdcbébbf2fc, |

| | 'server_id": '7cefd02b-97e4-482e-9c91-217cabeb65b2a), 'host_name': 'controller’, 'device': |
| | /dev/vdb', 'attached_at': '2025-04-09T12:11:45.000000'}, {'id": |

| | '82b41b69-aa4f-4ccl-a71a-cdcdcbbbf2fc!, ‘attachment_id'": |

| | 'be5bf360-a764-4cec-8216-80ce8c062ef2', 'volume_id':
'82b41b69-aa4f-4ccl-a71a-cdcdcbébbf2fc, |

| | 'server_id": '7843f583-1fc7-4d5c-91c1-3d9de9e1023a', 'host_name': 'controller’, 'device': |
| | Ydev/vdb', 'attached_at': '2025-04-09T12:10:53.000000'}] |

availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2025-04-09T12:09:55.000000
description	None
encrypted	False
id	82b41b69-aadf-4ccl-a71a-cdcdchbbf2fc
migration_status	None
multiattach	True
name	Vol1
os-vol-host-attr:host	controller@lb-cluster#lb-cluster

| os-vol-mig-status-attr:migstat | None |
| os-vol-mig-status-attr:name_id | None |
| os-vol-tenant-attr:tenant_id | 0a3da75464774fadb01506bf579c03ed

|
properties	
replication_status	None
size	20
snapshot_id	None
source_volid	None
status	in-use
type	Ib-multi-attach
updated_at	2025-04-09T12:11:48.000000
user_id	b2969eb5499346df88aecf4869040a99

17

© 2025 Lightbits Labs

@y lightbits

6. Conclusion

The integration of Lightbits with CSI for Kubernetes and Cinder for OpenStack, both supporting
multi-attachment for block storage, marks a significant leap forward in cloud-native and enterprise cloud
infrastructure. This evolution empowers DevOps teams to provision and manage high-performance storage
seamlessly, directly within their containerized and virtualized workflows, without needing to dive into
traditional storage management. It's about speed, scale, and simplicity—brought together with Lightbits’
industry-leading disaggregated, software-defined storage.

With multi-attach capabilities, users can now share a single volume across multiple pods or virtual machines,
enabling advanced use cases like clustered applications, shared file systems, and highly available
deployments. Whether you're orchestrating Kubernetes workloads or managing OpenStack VMs, Lightbits
delivers the flexibility to meet your evolving application needs without compromising on performance or
resilience.

What truly sets this integration apart is the native compatibility with the Lightbits API, streamlining the
storage provisioning process into a DevOps-friendly, infrastructure-as-code approach. By eliminating the
complexity of direct storage administration, DevOps teams gain full control and agility, while Lightbits
handles the underlying data services with speed, efficiency, and enterprise-grade reliability.

Ultimately, these integrations are more than technical enhancements—they’re a reflection of Lightbits’
vision: to enable fast, simple, and scalable storage infrastructure that aligns with the pace of modern
development. With this unified, API-driven approach, enterprises can confidently accelerate digital
innovation while letting DevOps teams focus on what they do best: building and shipping great software.

To learn more about Lightbits Labs, visit https:/www.lightbitslabs.com.

About Lightbits Labs

Lightbits Labs® (Lightbits) invented the NVMe over TCP protocol and offers best-of-breed
software-defined block storage that enables data center infrastructure modernization for organizations
building a private or public cloud. Built from the ground up for low consistent latency, scalability, resiliency,
and cost-efficiency, Lightbits software delivers the best price/performance for real-time analytics,
transactional, and AlI/ML workloads. Lightbits Labs is backed by enterprise technology leaders [Cisco
Investments, Dell Technologies Capital, Intel Capital, Lenovo, and Micron] and is on a mission to deliver the
fastest and most cost-efficient data storage for performance-sensitive workloads at scale.

Lightbits and Lightbits Labs are registered trademarks of Lightbits Labs, Ltd.
All trademarks and copyrights are the property of their respective owners.
18

© 2025 Lightbits Labs

https://www.lightbitslabs.com/

@y lightbits

& www.lightbitslabs.com = info@lightbitslabs.com
US Offices Israel Office
1830 The Alameda, 17 Atir Yeda Street,
San Jose, CA 95126, USA Kfar Saba 4464313, Israel

The information in this document and any document referenced herein is provided for informational purposes only, is provided as is and
with all faults and cannot be understood as substituting for customized service and information that might be developed by Lightbits
Labs Itd for a particular user based upon that user’s particular environment. Reliance upon this document and any document referenced
herein is at the user’s own risk.

The software is provided "As is", without warranty of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and non-infringement. In no event shall the contributors or copyright holders be liable
for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with
the software or the use or other dealings with the software.

Unauthorized copying or distributing of included software files, via any medium is strictly prohibited. LBWP12/2025/04

COPYRIGHT®© 2025 LIGHTBITS LABS LTD. - ALL RIGHTS RESERVED

19

© 2025 Lightbits Labs

http://www.lightbitslabs.com
mailto:info@lightbitslabs.com

	
	
	
	1. Introduction
	2. Prerequisites
	3. Lightbits CSI driver
	3.1 Lightbits CSI driver overview
	3.2 Configuring the Lightbits CSI driver*

	4. Configure CSI to use RWX with Lightbits
	4.1 Create the storage class to use RWX
	4.2 Create a Physical Volume Claim
	4.3 Create the first Pod and attach it to the PVC
	4.3 Create the second Pod and attach it to the same PVC

	5. OpenStack Multi-Attach Configuration
	5.1 Create a volume type
	5.2 Create a new volume with volume type lb-multi-attach
	
	5.3 Attach the Volume Vol1 to Instance Demo
	5.4 Attach the Volume Vol1 to Instance Backup

	
	6. Conclusion
	About Lightbits Labs

